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Abstract. A classical result of Blichfeldt, from 1921, gives a sharp
lower bound on the volume of a convex body K, whose lattice points
span the whole space, in terms of the lattice point enumerator #(K∩Zn).
We are interested in a version of this inequality on the set of 0-symmetric
convex bodies. Our motivation to study this problem comes from a
lack of methods that exploit the symmetry assumption in problems of
a similar kind and where 0-symmetry is a natural condition. We report
upon sharp Blichfeldt-type inequalities for 0-symmetric lattice polygons,
lattice crosspolytopes and lattice zonotopes.

1. Introduction

Let Kn be the set of all convex bodies in Rn, i.e., compact convex sets
with non-empty interior. A body K ∈ Kn is called centrally symmetric if
there exists an x ∈ Rn such that K−x = −(K−x). If x = 0 we say that K is
0-symmetric and we let Kn0 be the family of all 0-symmetric convex bodies
in Rn. When dealing with polytopes we write Pn and Pn0 , respectively.
The family of n-dimensional lattices in Rn is denoted by Ln and the usual
Lebesgue measure with respect to the n-dimensional Euclidean space by
voln(·). If the ambient space is clear from the context we omit the subscript
and just write vol(·). For a given bounded subset S ⊂ Rn and a lattice
Λ ∈ Ln the lattice point enumerator is denoted by G(S,Λ) = #(S ∩ Λ). If
Λ = Zn we shortly write G(S) = G(S,Zn). Finally, for a subset A ⊆ Rn the
dimension of its affine hull will be denoted by dimA.

The determination of bounds for the lattice point enumerator G(K) of
a convex body K ∈ Kn in terms of continuous magnitudes is a classical
problem which was initiated by a result of Blichfeldt [5].
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Theorem 1.1 (Blichfeldt, 1921). Let K ∈ Kn be a convex body such that
dim(K ∩ Zn) = n. Then

vol(K) ≥ 1

n!
(G(K)− n) .(1.1)

This inequality is best possible, as the simplices Sk = conv{0, ke1, e2,
. . . , en} show, where k ∈ N and ei denotes the i-th unit vector in Rn. Here
we have G(Sk) = n+k and vol(Sk) = k

n! . Note, that the condition dim(K ∩
Zn) = n is essential for inequality (1.1). If all lattice points of K would
be contained in a proper affine subspace of Rn, then the volume of K can
be arbitrarily small. An inequality of the above type is invariant under
lattice preserving transformations and furthermore K can be assumed to
be a polytope which is often more convenient for combinatorial arguments.
Indeed, setting PK = conv{K ∩Zn}, we clearly have vol(K) ≥ vol(PK) and
G(K) = G(PK). Also it is no loss of generality when we restrict to the
integer lattice Zn. This is because if Λ = AZn for some invertible matrix

A ∈ Rn×n, then vol(A−1K) = vol(K)
det(Λ) and G(K,Λ) = G(A−1K,Zn).

In this work we are interested in a Blichfeldt-type inequality on the set
of 0-symmetric convex bodies K ∈ Kn0 , and, in particular, deal with the
question whether 0-symmetry yields an improvement of (1.1) by an expo-
nential factor in the dimension. Although 0-symmetry is a very natural
condition, in many contexts with a combinatorial flavor it is not clear how
to exploit it. Famous examples for this lack of methods are the so called
3d-conjecture of Kalai [10] and the upper and lower bound problem on f -
vectors of 0-symmetric polytopes (see [17, Lect. 8]). The only general result
in this context is due to Stanley [16] who was able to solve the lower bound
problem for simplicial 0-symmetric polytopes.

First of all we will be concerned with the situation in the plane. Here, the
condition of central symmetry for P ∈ P2 is equivalent to saying that P is
a zonotope. This observation together with an inequality of Scott [14] lead
to satisfactory answers to the planar problem. Two given bodies K,L ∈ Kn
are called unimodularly equivalent, in symbols K ' L, if there is a lattice-
preserving affine transformation that maps K to L.

Theorem 1.2. Let P ∈ P2 be a lattice polygon that is not unimodularly
equivalent to the triangle S∗ = conv{0, 3e1, 3e2} and contains at least one
interior lattice point. Then,

vol(P ) ≥ 2

3
(G(P )− 3) .

The rectangles Rk = {x ∈ R2 : |x1| ≤ 1, 0 ≤ x2 ≤ k}, k ≥ 2, attain equality.

Note that for even values of k ∈ N the rectangles Rk are centrally sym-
metric with respect to a lattice point and therefore the above inequality is
sharp on the class K2

0. Furthermore, for the excluded triangle S∗ we have
vol(S∗) = 9

14 (G(S∗)− 3).
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Similar in flavor to results of Bárány [1] we can say considerably more
and quantify the intuition that if a lattice polygon has a lot of vertices then
its volume is well-approximated by its number of lattice points.

Proposition 1.1. Let P ∈ P2 be a centrally symmetric lattice polygon with
2m vertices. Then,

vol(P ) ≥ m

m+ 2
(G(P )− 2) .(1.2)

The rectangles {x ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ k}, k ∈ N, attain equality.

Any 0-symmetric lattice polytope clearly contains an interior lattice point.
Ehrhart theory provides tools that imply a Blichfeldt-type inequality for
any lattice polytope with this property. In particular, the inequality below,
which was already noted in [7, Cor. 3.3], shows that the existence of interior
lattice points already gives an improvement on Blichfeldt’s inequality by a
factor linear in the dimension.

Proposition 1.2. Let P ∈ Pn be a lattice polytope with at least one interior
lattice point. Then,

vol(P ) ≥ (n− 1) (G(P )− (n+ 1)) + 2

n!
.

Equality holds, for instance, for the simplex conv{e1, . . . , en,−(e1+. . .+en)}.

As mentioned earlier, we suspect that 0-symmetry implies an exponential
improvement upon (1.1). In support of this conjecture we study lattice
crosspolytopes C which are minimal convex bodies in the sense that any
0-symmetric convex body K ∈ Kn0 with dim(K ∩ Zn) = n contains a lattice
crosspolytope. An analogous result where G(C) is replaced by G(intC), i.e.,
the number of interior lattice points of C, was obtained by Bey, Henk and
Wills [4, Prop. 1.4]. Their argument uses techniques from Ehrhart theory
which do not seem to be applicable in the situation of G(C) and thus our
approach is a different one.

Theorem 1.3. Let C ∈ Pn0 be a lattice crosspolytope. Then

vol(C) ≥ 2n−2

n!
(G(C)− (2n− 3)) .

The standard crosspolytope C?n = conv{±e1, . . . ,±en} shows that the in-
equality is tight.

The classical Blichfeldt inequality (1.1) is one example among a variety of
problems that can be solved by the concept of subdivisions or, more specif-
ically, triangulations, which often allow a local analysis and the reduction
of the problem to much more handsome bodies, like simplices. In general,
a 0-symmetric polytope cannot be divided into smaller centrally symmet-
ric pieces and such an approach has to fail. On the positive side there is
the important class of zonotopes that admit such a subdivision into paral-
lelepipeds. A zonotope Z ∈ Pn is the Minkowski sum of finitely many line
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segments, that is, there are points v1, w1, . . . , vm, wm ∈ Rn, m ≥ n, such
that Z =

∑m
i=1[vi, wi]. Z is centrally symmetric with respect to the point∑m

i=1
1
2(wi−vi) and considering lattice zonotopes means that up to a lattice

translation of Z the vi’s and wi’s can be chosen to be lattice points. For
more details on zonotopes consult for example [15, 17]. Our next theorem
gives a sharp Blichfeldt-type inequality for lattice zonotopes and shows how
even stronger symmetry conditions can be handled for these special bodies.

Theorem 1.4. Let Z ∈ Pn be a lattice zonotope.

i) Then

vol(Z) ≥
(

1

2

)n−1 (
G(Z)− 2n−1

)
,

and equality holds if and only if Z '
n−1∑
i=1

[0, ei] + [0, ken], k ∈ N.

ii) If Z =
∑m

i=1[−ai, ai], for some ai ∈ Zn, then

vol(Z) ≥
(

2

3

)n−1 (
G(Z)− 3n−1

)
,

and equality holds if and only if Z '
n−1∑
i=1

[−ei, ei]+[−ken, ken], k ∈ N.

When we compare the inequalities in Theorems 1.1, 1.2 and 1.4 it is
reasonable to conjecture that a Blichfeldt-type inequality for all K ∈ Kn0
with dim(K ∩ Zn) = n looks like

vol(K) ≥ cn · (G(K)− (2n− 1)) ,(1.3)

where cn ≥ cn

n! for some absolute constant c > 1. The additive constant
on the right hand side should be the minimal number of lattice points con-
tained in an (n − 1)-dimensional body from the considered class. A search
for examples with a constant cn in (1.3) as small as possible showed that,
surprisingly, lattice crosspolytopes are not the extremal bodies. But still,
the constants are exponentially bigger than in Blichfeldt’s inequality.

Indeed, let C3 = [−1, 1]3 and Qn = conv{C3,±e4, . . . ,±en}. Then, for

n ≥ 3, we have vol(Qn) = 3 · 2n+1

n! and G(Qn) = 2n+ 21, and thus

vol(Qn) =
3

11
· 2n

n!
(G(Qn)− (2n− 1)) .

The factor 3
11 ·

2n

n! is the smallest that we found in dimensions 3 ≤ n ≤ 5.
For n ≥ 6 our best examples are Pn,k = C?n−1× [−ken, ken], where C?n is the

standard crosspolytope of dimension n and k ∈ N. Then vol(Pn,k) = 2n

(n−1)!k

and G(Pn,k) = (2k + 1)(2n− 1), and therefore

vol(Pn,k) =
2n−1

(n− 1)!(2n− 1)
(G(Pn,k)− (2n− 1)) .
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The remainder of the paper gives the details for the aforementioned re-
sults. Section 2 deals with the proof of Proposition 1.2 and the planar
situation. In Sections 3 and 4 the proofs for the Blichfeldt-type inequalities
for lattice crosspolytopes and lattice zonotopes are given.

2. Proof of Proposition 1.2 and the planar situation

We start with the proof of Proposition 1.2 which already can be found in
[7] but is given here for the sake of completeness. To this end, we need to
recall a small amount of Ehrhart theory; for details on this subject we refer
the reader, for instance, to [3] and [4]. The Ehrhart polynomial of a lattice

polytope P ∈ Pn is given by G(kP ) =
∑n

i=0 ai(P )
(
k+n−i
n

)
, k ∈ N, where

the coefficients ai(P ) only depend on P . In general these coefficients satisfy
a0(P ) = 1, a1(P ) = G(P )− (n+ 1), an(P ) = G(intP ) and a0(P ) + a1(P ) +
· · · + an(P ) = n! vol(P ). Furthermore, a result from Hibi [9] shows that
ai(P ) ≥ a1(P ), for i = 1, . . . , n − 1, if G(intP ) ≥ 1. A simple combination
of these relations now gives

n! vol(P ) =
n∑
i=0

ai(P ) ≥ an(P ) + (n− 1)a1(P ) + 1

≥ (n− 1) (G(P )− (n+ 1)) + 2,

as desired. Equality holds if and only if an(P ) = G(intP ) = 1 and an−1(P ) =
· · · = a1(P ) = G(P )− (n+ 1).

The remainder of this section will be devoted to the planar case and the
study of lattice polygons.

Proof of Theorem 1.2. This inequality is just a combination of two well-
known results for lattice polygons. The first one is an inequality by Scott
[14] which states that for any lattice polygon P that has at least one interior
lattice point

G(∂P ) ≤ 2 G(intP ) + 7,

and equality holds (up to unimodular equivalence) exactly for S∗. Since we
want to exclude S∗, we get 2 G(intP ) ≥ G(∂P ) − 6 and thus G(intP ) ≥
1
3 (G(P )− 6).

The second result we use is Pick’s Theorem [13], which states that

G(P ) = vol(P ) + 1
2 G(∂P ) + 1.(2.1)

Combining the two yields 2 vol(P ) = G(P ) + G(intP ) − 2 ≥ 4
3 G(P ) − 4,

which is equivalent to the claimed inequality. �

Proof of Proposition 1.1. It is well-known that centrally symmetric polygons
are zonotopes (see [17, Sect. 7.3] for details). Therefore, up to a lattice
translation we can write P =

∑m
i=1[0, ai] for suitable pairwise non-parallel

a1, . . . , am ∈ Z2\{0}. A result of Shephard [15, Thm. (54)] shows that P can
be dissected into parallelograms that are lattice translations of Pi,j = [0, ai]+
[0, aj ], where {i, j} runs over all two-element subsets of [m] = {1, . . . ,m}.
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Moreover, writing gcd(a) for the greatest common divisor of the entries of
a ∈ Z2, we get that the number of lattice points in a half-open edge of P
equals gcd(ai) for a suitable i. These two observations together with Pick’s
Theorem (see Equation (2.1)) yield

G(P ) = vol(P ) + 1
2 G(∂P ) + 1 = vol(P ) +

m∑
i=1

gcd(ai) + 1

=
∑

{i,j}∈([m]
2 )

vol(Pi,j) +

m∑
i=1

gcd(ai) + 1.

The volume of a lattice parallelogram equals the number of lattice points in

its half-open counterpart (see [2, p. 89]), so for any {i, j} ∈
(

[m]
2

)
we have

vol(Pi,j) = G([0, ai) + [0, aj)) ≥ gcd(ai) + gcd(aj)− 1,

and equality holds if and only if relint(Pi,j) ∩ Z2 = ∅. Thus

G(P ) =
∑

{i,j}∈([m]
2 )

G([0, ai) + [0, aj)) +

m∑
i=1

gcd(ai) + 1

≥ m
m∑
i=1

gcd(ai)−
(
m

2

)
+ 1 =

m

2
G(∂P )−

(
m

2

)
+ 1.

Using Pick’s Theorem (2.1) once more we derive

vol(P ) = G(P )− 1

2
G(∂P )− 1 ≥ m− 1

m
G(P )− m2 +m− 2

2m

=
m− 1

m

(
G(P )− m+ 2

2

)
,(2.2)

which is greater than or equal to the claimed m
m+2 (G(P )− 2) if and only

if G(P ) ≥ 2m +
(
m−1

2

)
. This last inequality follows since the 2m vertices

of P are lattice points and because G(intP ) ≥
(
m−1

2

)
, which we prove by

induction on m. For m = 2 there is nothing to show, so let m ≥ 3 and
consider Q =

∑m−1
i=1 [0, ai]. By assumption, Q has at least

(
m−2

2

)
many

interior lattice points and 2(m− 1) vertices. No two of the ai’s are parallel,
therefore after the addition of the remaining line segment [0, am] to Q exactly
m−2 (clockwise consecutive) vertices of Q are interior points of P and thus

G(intP ) ≥ G(intQ) +m− 2 ≥
(
m−1

2

)
. �

Recall that due to Scott [14] the inequality G(∂P ) ≤ 2 G(intP ) + 7 holds
for any lattice polygon P ∈ P2 with interior lattice points. As a gen-
eralization of Scott’s result Ko lodziejczyk and Olszewska [11] proved that
G(∂P ) ≤ 2 G(intP )− v(P ) + 10, where v(P ) is the number of vertices of P ,
and proposed the problem to further improve upon this bound when v(P )
is large. As a corollary to Proposition 1.1 we obtain an answer to their
question for centrally symmetric lattice polygons with at least six vertices.
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Corollary 2.1. Let P ∈ P2 be a centrally symmetric lattice polygon with
2m ≥ 6 vertices. Then,

G(∂P ) ≤ 4

m− 1
G(intP ) + 4.

Proof. Pick’s theorem (2.1) yields vol(P ) = G(intP ) + 1
2G(∂P ) − 1 and

together with Inequality (2.2) we obtain G(∂P ) ≤ 2
m−2 G(intP ) + m + 1.

This is at most the claimed 4
m−1 G(intP )+4 if and only if G(intP ) ≥

(
m−1

2

)
,

which we have already seen in the proof of Proposition 1.1. �

3. Lattice crosspolytopes

Throughout this section we let C be a lattice crosspolytope, that is, C =
conv{±a1, . . . ,±an}, for some linearly independent a1, . . . , an ∈ Zn.

For a given δ ∈ {−1, 0, 1}n let supp(δ) = {i ∈ [n] : δi 6= 0}, consider
the simplex Sδ = conv{0, δ1a1, . . . , δnan} and let Fδ be its facet that does
not contain the origin, that is, Fδ = conv{δiai : δi 6= 0}. The simplices
Sδ, δ ∈ {−1, 0, 1}n, clearly define a triangulation of the crosspolytope C
and by definition, Sδ is a face of Sε if and only if supp(δ) ⊆ supp(ε) and
δi = εi, i ∈ supp(δ). Therefore, any relative interior point of Sδ and Fδ,
with # supp(δ) = i, is contained in exactly 2n−i full-dimensional simplices
Sε. Let

S̊δ = relint(Sδ) ∪ relint(Fδ) and Si =
⋃

δ∈{−1,0,1}n
# supp(δ)=i

S̊δ, for i = 0, . . . , n.

Then, C is partitioned into the sets S̊δ and thus we get G(C) =
∑n

i=0 G(Si).
Writing

∆i(ε) = {δ ∈ {−1, 0, 1}n : # supp(δ) = i, Sδ a face of Sε},
for i = 0, . . . , n and ε ∈ {−1, 1}n, we have

G(Si) =
1

2n−i

∑
ε∈{−1,1}n

∑
δ∈∆i(ε)

G(S̊δ).(3.1)

The method of our proof of Theorem 1.3 is to attach the simplices Sδ to the
vertices vγ =

∑n
i=1 γiai, γ ∈ {0, 1}n, of the parallelepiped PC =

∑n
i=1[0, ai],

apply a formula for the lattice points in PC and then cautiously identify
lattice points in C and PC .

To make things more precise let f : Rn → Rn be the mapping fi(x) =
1−x

2 , 1 ≤ i ≤ n. Then, for all ε ∈ {−1, 1}n we have vf(ε) + Sε ⊂ PC .

Indeed, the vertices of vf(ε) +Sε are exactly
∑n

j=1
1−εj

2 aj and
∑n

j=1
1−εj

2 aj+

εiai, 1 ≤ i ≤ n, which can be seen to be vertices of PC . Thus, T (C) ={
vf(ε) + Sε : ε ∈ {−1, 1}n

}
is a collection of simplices spanned by vertices of

PC . An illustration for n = 2 is given in Figure 1.
The following lemma shows how relative interior points of PC are covered

by relative interior points of vf(ε) + Sε and vf(ε) + Fε.
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−a2

a1−a1

a2

S(1,1)

S(−1,−1) S(1,−1)

S(−1,1)

C

a1

a2

S(1,1)

S(−1,−1)

S(−1,1)

S(1,−1)

0

a1 + a2

PC

Figure 1. Two-dimensional illustration of the dissection of
C and its rearrangement in PC .

Lemma 3.1. Let ε, ε′ ∈ {−1, 1}n.

i) If int
(
vf(ε) + Sε

)
∩ int

(
vf(ε′) + Sε′

)
6= ∅, then ε and ε′ differ in at

most one coordinate.
ii) If int

(
vf(ε) + Sε

)
∩ relint

(
vf(ε′) + Fε′

)
6= ∅, then ε and ε′ differ in

at most one coordinate.
iii) If relint

(
vf(ε) + Fε

)
∩ relint

(
vf(ε′) + Fε′

)
6= ∅ and n ≥ 3, then ε and

ε′ differ in at most one coordinate. For n = 2 there is no restriction
on ε and ε′.

Proof. We only give the arguments for i), since those for ii) and iii) are analo-
gous. By assumption there is an x ∈ int

(
vf(ε) + Sε

)
∩ int

(
vf(ε′) + Sε′

)
. This

point has two representations with barycentric coordinates of the vertices of
vf(ε) + Sε and vf(ε′) + Sε′ , respectively. That is, there are α, β ∈ (0, 1)n+1

with
∑n

i=0 αi =
∑n

i=0 βi = 1 such that

x = α0

n∑
j=1

1− εj
2

aj +

n∑
i=1

αi

 n∑
j=1

1− εj
2

aj + εiai


= β0

n∑
j=1

1− ε′j
2

aj +

n∑
i=1

βi

 n∑
j=1

1− ε′j
2

aj + ε′iai

 .

Collecting ai’s and using
∑n

i=0 αi =
∑n

i=0 βi = 1 yields

n∑
i=1

(
1− εi

2
+ αiεi

)
ai =

n∑
i=1

(
1− ε′i

2
+ βiε

′
i

)
ai.

Since the ai’s are linearly independent, these representations coincide and we
get (2αi−1)εi = (2βi−1)ε′i, for all i = 1, . . . , n. The coordinates of ε and ε′

are either 1 or −1, and so αi = βi whenever εi = ε′i, and αj = 1−βj whenever
εj = −ε′j . Let us relabel the indices such that εi = ε′i for i = 1, . . . , k and

εj = −ε′j for j = k+1, . . . , n. This means that k is the number of coordinates

where ε and ε′ agree. Exploiting
∑n

i=0 αi =
∑n

i=0 βi = 1 and αi, βi > 0 we



BLICHFELDT-TYPE INEQUALITIES AND CENTRAL SYMMETRY 9

obtain

1 =

n∑
i=0

αi = α0 +

k∑
i=1

βi +

n∑
j=k+1

(1− βj)

= α0 +

k∑
i=1

βi −
n∑

j=k+1

βj + n− k = α0 + β0 − 1 + 2

k∑
i=1

βi + n− k

> n− k − 1.

Therefore, k ≥ n − 1 which leaves only one coordinate where ε and ε′ may
be different. �

Note, that this lemma generalizes for all i ≥ 1 to i-dimensional simplices
vf(ε) +Sδ, where Sδ is a face of Sε and # supp(δ) = i, by applying the same
argument in a fixed i-face of PC .

We need a last ingredient for the proof of Theorem 1.3.

Lemma 3.2. Let P ∈ Pn be a lattice parallelepiped and write Fi(P ) for the
union of all i-faces of P , 0 ≤ i ≤ n. Then

2n vol(P ) =
n∑
i=0

2i G(relintFi(P )).

Proof. Since the claimed equality is invariant under lattice translations of
P , we can assume that P =

∑n
i=1[0, vi], for some linearly independent

v1, . . . , vn ∈ Zn. It is well-known (e.g. [2, p. 89]) that the volume of P
is given by the number of lattice points in its half-open counterpart, that is,
vol(P ) = # (

∑n
i=1[0, vi) ∩ Zn) . At any vertex of P we now place a copy of P

which is seen to be generated by the edges that emanate from that vertex.
In this way we have counted the lattice points in P with a multiplicity that
we can determine. Indeed, the lattice points in the relative interior of an
i-face F of P are covered exactly 2i times, since F has that many vertices
and a copy of P contributes relative interior lattice points to F if and only
if it was placed at a vertex of F . Further, we get 2n times the volume of P
in this way and the desired formula follows. �

Similarly to the definition of Fi(P ) in the preceding lemma we write

Ti(C) =
⋃

ε∈{−1,1}n

⋃
δ∈∆i(ε)

(
vf(ε) + S̊δ

)
.

By construction we have Ti(C) ⊆ relintFi(PC), for all i = 2, . . . , n, and
T0(C) = relintF0(PC) = vert(PC). Furthermore, T1(C) = relintF1(PC) ∪
relintF0(PC).

Proof of Theorem 1.3. The volume of C is given by

vol(C) =
2n

n!
|det(a1, . . . , an)| = 2n

n!
vol(PC).
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So we can start from Lemma 3.2 and obtain

n! vol(C) = 2n vol(PC) =

n∑
i=0

2i G(relintFi(PC))

≥
n∑
i=2

2i G(Ti(C)) + 2 G(relintF1(PC)) + 2n.(3.2)

Lemma 3.1 implies that for all i ≥ 2, every lattice point in relintFi(PC)

is covered at most four times by simplices vf(ε) + S̊δ with # supp(δ) = i.
Therefore, by virtue of Equation (3.1) we get for i ≥ 2,

G(Ti(C)) ≥ 1

4

∑
ε∈{−1,1}n

∑
δ∈∆i(ε)

G(S̊δ) = 2n−i−2 G(Si).

Next, we need to consider the lattice points in the edges of PC . We have

2 G(relintF1(PC)) =
∑

ε∈{−1,1}n

∑
δ∈∆1(ε)

G(relint(Sδ))

=
∑

ε∈{−1,1}n

∑
δ∈∆1(ε)

(
G(S̊δ)− 1

)
= 2n−1 G(S1)− n2n.

With these two relations we can now continue Inequality (3.2) by

n! vol(C) ≥ 2n−2
n∑
i=2

G(Si) + 2n−1 G(S1)− n2n + 2n

= 2n−2 (G(C)−G(S1)−G(S0)) + 2n−1 G(S1)− n2n + 2n

≥ 2n−2 (G(C)− (2n− 3)) .

The last inequality follows, since by definition of S̊δ we have G(S̊δ) = 1, for

# supp(δ) = 0, and G(S̊δ) ≥ 1, for # supp(δ) = 1, and therefore G(S0) = 1
and G(S1) ≥ 2n. �

4. Lattice zonotopes

Lemma 4.1. Let P ∈ Pn be a lattice parallelepiped. Then

vol(P ) ≥
(

1

2

)n−1 (
G(P )− 2n−1

)
,

and equality holds if and only if P '
∑n−1

i=1 [0, ei] + [0, ken], for some k ∈ N.

Proof. Using the notation from Lemma 3.2 we clearly have

G(P ) =
n∑
i=0

G(relintFi(P )) and G(relintF0(P )) = 2n.
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Thus, Lemma 3.2 yields

vol(P ) =
n∑
i=0

2i−n G(relintFi(P ))

≥
(

1

2

)n−1 n∑
i=1

G(relintFi(P )) + 1 =

(
1

2

)n−1 (
G(P )− 2n−1

)
.

We also see that equality holds if and only if G(relintFi(P )) = 0, for all
i = 2, . . . , n, which means that all lattice points of P are contained in its
edges. By a suitable lattice translation we can write P =

∑n
i=1[0, ai] for

some linearly independent generators ai ∈ Zn. Then there is at most one
non-primitive generator, say an, among the ai’s. Indeed, if we assume a1

would also be non-primitive then the interior lattice points in the segments
[0, a1] and [0, an] yield an interior lattice point in the 2-face [0, a1] + [0, an]
of P which has just been excluded.

So, there is a k ∈ N such that a′n = 1
kan ∈ Zn is primitive and the half-

open lattice parallelepiped P ′ =
∑n−1

i=1 [0, ai) + [0, a′n) contains exactly one
lattice point. This means that the generators a1, . . . , an−1, a

′
n span a basis

of Zn which gives the equality characterization. �

A dissection property of zonotopes allows us to transfer this inequality to
the rich class of lattice zonotopes.

Proof of Theorem 1.4 i). First of all, up to a lattice translation any lattice
zonotope has the form Z =

∑m
i=1[0, ai], for some a1, . . . , am ∈ Zn andm ≥ n.

Analogously to the planar case, Shephard’s result [15, Thm. (54)] gives
a dissection C(Z) of Z into parallelepipeds that are lattice translates of∑n

j=1[0, aij ]. Such a dissection can be obtained by starting with Cn(Z) which

consists of
∑n

i=1[0, ai] and then successively processing the generators aj for
j > n to obtain collections Cj(Z) of parallelepipeds in the following way:
for a given generator aj consider all the facets of parallelepipeds of Cj−1(Z)
that can be “seen“ by aj , that is to say that there is a point on the ray
{λaj : λ ≥ 0} that lies beyond the facet. These facets together with the
segment [0, aj ] generate the new parallelepipeds in Cj(Z) \ Cj−1(Z). After
having processed all the generators in this way we let C(Z) = Cm(Z). This
process naturally induces an ordering P1, . . . , Pt of the parallelepipeds in

C(Z) such that for all 1 < j ≤ t the intersection Pj ∩
(⋃j−1

i=1 Pi

)
contains at

least a facet of Pj .

In order to prove the claimed inequality for Z =
⋃t
i=1 Pi, we proceed by

induction on t. The case t = 1 is precisely Lemma 4.1. So, let t ≥ 2 and
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write Qt−1 =
⋃t−1
i=1 Pi. By the induction hypothesis and Lemma 4.1 we get

vol(Z) = vol(Pt ∪Qt−1) = vol(Pt) + vol(Qt−1)

≥
(

1

2

)n−1 (
G(Pt)− 2n−1 + G(Qt−1)− 2n−1

)
≥

(
1

2

)n−1 (
G(Z)− 2n−1

)
.

The last inequality holds since as noted above Pt ∩ Qt−1 contains at least
a facet of Pt and thus at least 2n−1 lattice points which then are counted
twice.

In order to derive the equality case characterization let us assume that
t > 1 and that no two of the generators of Z are parallel (which we can
always do). The argumentation above shows that equality can only hold if
the intersection Pt∩Qt−1 is precisely a facet, say F , of Pt. By construction of
C(Z) there must be some j ∈ {1, . . . , t−1} such that Pt∩Pj = F . Now, the
zonotope Z = Pt ∪Qt−1 is convex, which means that Pj must be contained
in the intersection of the half-spaces corresponding to the facets of Pt that
are not equal to F . But this is a contradiction since the set of generators of
Pt and Pj must be different. Thus, equality can only hold for t = 1 and by
Lemma 4.1 Z is unimodularly equivalent to the claimed parallelepiped. �

4.1. Lattice zonotopes centrally symmetric to a lattice point. In the
following we are concerned with lattice zonotopes whose center of symmetry
is also a lattice point. While the inequality in the first part of Theorem 1.4
clearly also holds for these zonotopes, we will show that we can say consid-
erably more if we deal with lattice zonotopes of the form Z =

∑m
i=1[−ai, ai],

where ai ∈ Λ. Every face of such a lattice zonotope, which by a result of
Bolker [6, Thm. 3.3] is centrally symmetric itself, is indeed symmetric to a
lattice point of Λ.

The following lemma could be proved by a more lengthy version of the
arguments that were given in the proof of Lemma 4.1. Instead we will
present another method of proof that, on the other hand, is also applicable
for Lemma 4.1. Its formulation is with respect to an arbitrary lattice Λ ∈ Ln
which is necessary for the inductive argument.

Lemma 4.2. Let Λ ∈ Ln be a lattice, a1, . . . , an ∈ Λ be linearly independent
and consider the parallelepiped P =

∑n
i=1[−ai, ai]. Then

vol(P )

det(Λ)
≥
(

2

3

)n−1 (
G(P,Λ)− 3n−1

)
,

and equality holds if and only if P '
∑n−1

i=1 [−bi, bi] + [−kbn, kbn], for some
k ∈ N and a basis {b1, . . . , bn} of Λ.

Proof. In order to use an inductive argument we consider for l = 1, . . . , n the

l-dimensional lattice parallelepiped Pl =
∑l

i=1[−ai, ai] and the sublattice
Λl = lin(Pl) ∩ Λ of Λ that lies in the linear hull of Pl. For the equality case
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characterization let Rlk =
∑l−1

i=1[−bi, bi] + [−kbl, kbl], for some k ∈ N and a
basis {b1, . . . , bl} of Λl.

For l = 1 it is straightforward that vol1(P1)
det(Λ1) = G(P1,Λ1)−1 and that there

is a k ∈ N such that P1 = R1
k. So let l ≥ 2. Then, by the geometry of Pl,

voll(Pl) = 2 ||al|lin(Pl−1)⊥|| voll−1(Pl−1),(4.1)

where al|lin(Pl−1)⊥ is the orthogonal projection of al to the orthogonal com-
plement lin(Pl−1)⊥ of lin(Pl−1) which is taken in lin(Pl). Let wl ∈ N be such
that 2wl + 1 is the number of lattice hyperplanes in Λl that are parallel to
Λl−1 and intersect Pl. Put differently, 2wl is the lattice width of Pl with
respect to Λl in direction orthogonal to lin(Pl−1). If we consider Λl−1 ⊂ Λl
as a sublattice, we can use a result from lattice theory (see [12, Prop. 1.2.9])
to obtain

det(Λl) = det(Λl−1) · det(Λl|lin(Pl−1)⊥)(4.2)

= det(Λl−1) · ||al|lin(Pl−1)⊥||
wl

.

Now by the relations (4.1), (4.2) and the induction hypothesis we get

voll(Pl)

det(Λl)
=

2 ||al|lin(Pl−1)⊥|| voll−1(Pl−1)

det(Λl−1) · ||al|lin(Pl−1)⊥||
wl

≥ 2wl

(
2

3

)l−2 (
G(Pl−1,Λl−1)− 3l−2

)
,

which is greater or equal than
(

2
3

)l−1 (
G(Pl,Λl)− 3l−1

)
if and only if

3wl G(Pl−1,Λl−1) ≥ G(Pl,Λl) + 3l−1(wl − 1).

This inequality holds by G(Pl−1,Λl−1) ≥ 3l−1 and (2wl + 1)G(Pl−1,Λl−1) ≥
G(Pl,Λl), where the latter comes from counting lattice points in Pl by the
lattice hyperplanes that are parallel to Λl−1 and the relation

G(t+ Pl−1,Λl−1) ≤ G(Pl−1,Λl−1), for all t ∈ lin(Pl−1).

This last inequality follows by partitioning Pl−1 into half-open “sub-parallel-
epipeds” and using the well-known fact that G(t + Q) ∈ {0,G(Q)}, for
any t ∈ Rn, and any possibly lower-dimensional half-open lattice paral-
lelepiped Q (see for instance [8, Sect. 2]).

Equality is attained if and only if there is equality in the induction hypoth-
esis and the equations G(Pl−1,Λl−1) = 3l−1 and (2wl + 1)G(Pl−1,Λl−1) =
G(Pl,Λl) hold true. This means that the generators {a1, . . . , al−1} of Pl−1

span a basis of Λl−1 and al is an integral multiple of some bl ∈ Λl which
completes that basis to a basis of Λl. In other words, Pl is unimodularly
equivalent to Rlk, for some k ∈ N. �
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Remark 4.1. For lattice parallelepipeds whose center of symmetry is a lat-
tice point, but which are not of the form

∑n
i=1[−ai, ai], for some ai ∈ Zn,

the inequality in Lemma 4.2 does not hold in general.
As an example consider Pk = [−kv1, kv1] + [−v2, v2] + [−v3, v3] with v1 =

(1
2 ,

1
2 , 0), v2 = (1

2 , 0,
1
2), v3 = (0, 1

2 ,
1
2). Pk is a lattice parallelepiped for odd

k ∈ N, and we have vol(Pk) = 2
5 ·

k
k−1(G(Pk)− 9).

Examples for any dimension are obtained by successively taking prisms
over Pk. More precisely, for Pnk = Pk +

∑n
i=4[−ei, ei], we have vol(Pnk ) =

2
5

(
2
3

)n−3 k
k−1

(
G(Pnk )− 3n−1

)
.

Theorem 1.4 ii) now follows from Lemma 4.2 in the same way as Theorem
1.4 i) followed from Lemma 4.1.
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